

Methyleneimine CH₂=NH as a Unidentate Ligand in Rhenium Complexes**

Gabriele Albertin,* Stefano Antoniutti, Alessia Bacchi, Emilio Bordignon, Maria Teresa Giorgi, and Giancarlo Pelizzi

Coordinated hydrazines RNHNH2 are reported to react with oxidizing agents, such as [Pb(OAc)₄] and H₂O₂, to give the corresponding diazenes RN=NH, the stabilization of which on an appropriate metal fragment allows their separation as coordinated species.[1-3] We now report a new reaction of coordinated methylhydrazine, which reacts with [Pb(OAc)₄] to give a η^1 -NH=CH₂ methyleneimine derivative.

The CH₂=NH molecule is a reactive species which was first obtained in 1933 from the low-temperature reaction of HCN with hydrogen.^[4] It has been detected in several galactic objects^[5] and proposed as a possible precursor^[6] of the simplest α -amino acid, glycine. As a ligand, it is present in only one case, through π coordination^[7] to an osmium center; no other report has been found on this molecule, which displays a simple constitution and structure, and has still unknown properties.

The reaction of the hydride^[8] [ReH(CO){P(OEt)₃}₄] with triflic acid (TfOH) gives the thermally unstable $[Re(\eta^2 - \eta^2 + \eta^2)]$ H_2 (CO){P(OEt)₃}₄]+(CF₃SO₃)⁻ species, which loses H_2 , affording the compound $[Re(\kappa^1-OTf)(CO)\{P(OEt)_3\}_4]$. Substitution of the weakly bound triflato ligand with methylhydrazine gives trans-[Re(CH₃NHNH₂)(CO){P(OEt)₃}₄]⁺ (1), which was isolated as a BPh₄ salt (1-BPh₄) in about 70% yield (Scheme 1).

Complex 1-BPh₄ was characterized by standard methods (IR, NMR, $\Lambda_{\rm M}$, elemental analysis). The IR spectra show the v_{NH} bands at 3343 and 3291 cm $^{-1}$ of the methylhydrazine

Scheme 1. $P = P(OEt)_3$.

[*] Prof. G. Albertin, S. Antoniutti, E. Bordignon, Dr. M. T. Giorgi Dipartimento di Chimica

Università Ca' Foscari di Venezia

Dorsoduro 2137, 30123 Venezia (Italy)

Fax: (+39) 041-234-8917

E-mail: albertin@unive.it

Prof. A. Bacchi, G. Pelizzi

Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica Chimica Fisica, Università di Parma

Parco Area delle Scienze 17/a, 43100 Parma (Italy)

[**] This work was supported by MIUR (Rome)—Programmi di Ricerca Scientifica di Rilevante Interesse Nazionale, Cofinanziamento 2000 -2001. We thank Daniela Baldan for technical assistance.

Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.

ligand, whereas the ¹H NMR spectrum exhibits resonance signals at $\delta = 4.35$ (s, br; Re NH_2 NHCH₃), 3.93 (m, br; ReNH₂NHCH₃), and 2.49 ppm (d; ReNH₂NHCH₃) of the CH₃NHNH₂ group.

Treatment of methylhydrazine complex 1-BPh4 with an equimolar amount of [Pb(OAc)₄] at low temperature (-40°C) in CH₂Cl₂ gives a mixture of methyldiazene $[Re(CH_3N\!\!=\!\!NH)(CO)\{P(OEt)_3\}_4]BPh_4~\textbf{(2-BPh_4)}~and~methyl$ eneimine $[Re(\eta^1-NH=CH_2)(CO)\{P(OEt)_3\}_4]BPh_4$ (3-BPh₄) derivatives (Scheme 2). These were separated by fractional crystallization in moderate yields (42 % for 2-BPh4, 24 % for 3-BPh₄) as analytically pure white crystalline solids.

Scheme 2. $P = P(OEt)_3$.

The complexes were characterized by spectroscopy and in two X-ray diffraction studies.[9-12] Figure 1 shows the crystal structure of the cation $[Re(\eta^1-NH=CH_2)(CO)\{P(OEt)_3\}_4]^+$ (3). The most relevant feature of the complex is the presence

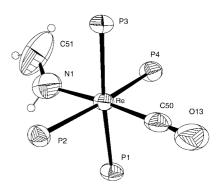


Figure 1. Structure of the core of the cation 3 (thermal ellipsoids drawn at the 30% level; ethoxy groups are omitted for clarity). Selected bond lengths [Å] and angles [°]: Re-C50 1.956(8), Re-N1 2.32(1), Re-P3 2.362(2), Re-P1 2.362(2), Re-P4 2.374(2), Re-P2 2.378(2), O13-C50 1.108(8), N1-C51 1.26(1); C50-Re-N1 175.9(3), C50-Re-P3 87.7(2), N1-Re-P3 95.9(2), C50-Re-P1 86.9(2), N1-Re-P1 89.5(2), P3-Re-P1 174.44(6), C50-Re-P4 94.4(2), N1-Re-P4 87.6(2), P3-Re-P4 90.00(7), P1-Re-P4 89.25(7), C50-Re-P2 92.9(2), N1-Re-P2 85.0(2), P3-Re-P2 91.44(6), P1-Re-P2 90.01(6), P4-Re-P2 172.56(6), O13-C50-Re 177.2(6), C51-N1-Re 134(1).

of the methyleneimine ligand, trans to the carbonyl group, and coordinated with the metal in a bent mode, as required by the sp² character of the N atom (Re-N-C 139(1)°), with Re-N 2.32(1) and N-C 1.26(1) Å. This is, in fact, the first example of η^1 coordination of a CH₂=NH molecule to a transition metal, the only other similar case being the deprotonated CH₂=N=M fragment found in $(\mu^2$ -methyleneamido)tricarbonylbis(η^5 -pentamethylcyclopentadienyl)methyleneamidodimolybdenum,^[13] in which the system is practically linear (M-N-C 163°). The bent geometry found for our terminal methyleneimine group fits the common structural features of alkylic and arylic R₂C=NH ligands, which show similar M-N-C angles and generally larger N-C distances (ranging from 1.25 to 1.30 Å; the shortest ones are found in the catenabis(isopropylideneamine)gold trifluoromethanesulfonate complex at 173 K^[14]). The plane of the methyleneimine ligand (Re-N1-C51) forms a dihedral angle of 38(1)° with the equatorial coordination plane containing the N donor (Re-C50-P1-P3-N1).

The 1H NMR spectra of $3-BPh_4$ are diagnostic for the presence of the methyleneimine ligand, showing a broad high-frequency signal at $\delta=13.98$ ppm, which is attributed to the =NH imine proton. Substituted imine R_2C =NH, and RHC=NH bonded to a metal center $^{[14,\,15]}$ are also reported to give rise to a high-frequency NH proton resonance signal. A slightly broad multiplet is also present at $\delta=3.66$ ppm, which is coupled with the imine proton and was assigned to one of the two protons of the methylene =CH $_2$ group. The other is probably masked by the methylene signals of the $P(OCH_2CH_3)_3$ ligands. In the temperature range between +30 and $-80\,^{\circ}C$ the $^{31}P\{^{1}H\}$ NMR spectrum displays a sharp singlet, which is assigned to a *trans* geometry like that found in the solid state.

In the crystal structure of **2**-BPh₄, the methyldiazene and carbonyl ligands in the cation are exchanged between two *trans* coordination positions, with 50% substitutional disorder, and their refinement was possible only by restraining them to conform to a plausible geometry.^[16]

The 1H NMR spectra of **2**-BPh₄ further support the presence of the CH₃N=NH ligand, showing the NH resonance signal at $\delta = 15.99$ ppm and one doublet at $\delta = 4.37$ ppm, attributed to the methyl group. A mutual *trans* position of carbonyl and methyldiazene ligands is also suggested in solution by the presence of only one singlet at $\delta = 116.7$ ppm in the $^{31}P\{^{1}H\}$ NMR spectrum.

Other methylhydrazine complexes, such as dicarbonyls $[Re(CH_3NHNH_2)(CO)_2P_3]BPh_4$ ($P=P(OEt)_3$ or $PPh(OEt)_2$), were prepared, and their reaction with $[Pb(OAc)_4]$ led, at $-40^{\circ}C$, to a mixture of methyldiazene $[Re(CH_3N=NH)(CO)_2P_3]^+$ and methyleneimine $[Re(\eta^1-NH=CH_2)(CO)_2P_3]^+$ derivatives which, in the case of $P(OEt)_3$, were separated in pure form or, for $PPh(OEt)_2$, were detected by spectroscopy. The reaction affording the coordinated $\eta^1-NH=CH_2$ molecule seems to be general for the $[Re(CO)_nP_{5-n}]$ (n=1,2) fragment containing a methylhydrazine ligand, but appears to be specific for $[Pb(OAc)_4]$, as attempts to carry out the reaction with other oxidants such as MnO_2 or H_2O_2 were unsuccessful.

The formation of species **2**-BPh₄ and **3**-BPh₄ from the reaction of methylhydrazine complexes **1**-BPh₄ (Scheme 2) suggests that [Pb(OAc)₄] gives rise to two parallel reactions involving selective oxidation of CH₃NHNH₂ to methyldiazene CH₃N=NH, giving **2**-BPh₄, in one case, whereas a completely new reaction involving cleavage of the N=N bond and formation of the CH₂=NH moiety takes place in the other. Although coordinated hydrazine is known to undergo oxidation by [Pb(OAc)₄] or other reagents to the corresponding diazene, [1-3] the reaction affording coordinated η^1 -NH=CH₂ is

new, unexpected, and interesting—not only because it allows us to prepare, and stabilize by coordination, an elusive molecule such as methyleneimine, but also because, whatever the mechanism^[17] may be, cleavage of the N=N bond^[18] of a coordinated hydrazine^[19] takes place in the presence of an oxidizing species.

Studies are currently in progress to explore the reaction chemistry of the M-NH=CH₂ systems, mainly in terms of deprotonation and substitution reactions.

Experimental Section

All reactions were carried out under an inert atmosphere using dry, air-free solvents

1-BPh₄: CF₃SO₃H (TfOH) (0.23 mmol, 20 μL) was added to a solution of [ReH(CO){P(OEt)₃}₄]^[8] (200 mg, 0.23 mmol) in CH₂Cl₂ (5 mL) cooled to $-196\,^{\circ}$ C, and the reaction mixture was allowed to warm to room temperature, and stirred for 1 h. CH₃NHNH₂ (0.6 mmol, 32 μL) was added and stirring was continued for 24 h. The solvent was removed under reduced pressure to give an oil which was triturated with ethanol (3 mL) containing NaBPh₄ (0.6 mmol, 205 mg). A white solid slowly separated out, which was crystallized from CH₂Cl₂ and ethanol to give **1-BPh**₄ (210 mg; yield 73 %). IR (KBr): \bar{v} = 3343 (m), 3291 (m) (v_{NH}), 1880 cm⁻¹ (s) (v_{CO}); ¹H NMR (200 MHz, CD₂Cl₂, 293 K, TMS): $\bar{\delta}$ = 7.40 –6.86 (m, 20H; Ph), 4.35 (s, br, 2H; NH₂), 4.05 (m, 24H; CH₂); 3.93 (m, br, 1H; NH), 2.49 (d, ³J_{H,H} = 6 Hz, 3 H; CH₃N), 1.29 ppm (t, 36H; CH₃); ³¹P{¹H}{200 MHz}, CD₂Cl₂, 293 K, H₃PO₄ 85 % ext.): $\bar{\delta}$ = 117.9 ppm (s); elemental analysis (%) calcd for C₅₀H₈₆BN₂O₁₃P₄Re (1244.14): C 48.27, H 6.97, N 2.25; found: C 48.15, H 7.01, N 2.13.

2-BPh₄, 3-BPh₄: A sample of 1 (124 mg, 0.1 mmol) was placed in a threenecked 25-mL flask fitted with a solid-addition sidearm containing [Pb(OAc)₄] (0.1 mmol, 44 mg). The system was evacuated, CH₂Cl₂ (8 mL) was added, the solution cooled to -40° C, and $[Pb(OAc)_4]$ was added portionwise over 10-20 min to the cold stirring solution. The reaction mixture was then allowed to warm to 0°C, stirred for 10 min, and the solvent removed under reduced pressure. The oil obtained was treated at 0°C with ethanol (2 mL) containing NaBPh₄ (0.2 mmol, 68 mg). A white solid slowly separated out which was filtered and crystallized fractionally. A typical separation involved slow cooling from +20 to $-25\,^{\circ}\text{C}$ of a saturated solution of the complexes prepared by adding ethanol (8 mL) to the white solid and enough CH2Cl2 to obtain a saturated solution at room temperature. The first crystals are of 2-BPh4, the second a mixture of 2-BPh4 and 3-BPh₄ which was recrystallized. A total of 52 mg of 2-BPh₄ (yield 42 %) was separated. By further cooling of the solution, 29 mg of white crystals of 3-BPh₄ (yield 24%) were obtained. Pure samples of 2-BPh₄ and 3-BPh₄ can also be obtained by Pasteur separation of crystals obtained by cooling a saturated solution of the reaction product in ethanol to -25 °C.

2-BPh₄: IR (KBr): \vec{v} = 1890 cm⁻¹ (s) (ν_{CO}); ¹H NMR (200 MHz, CD₂Cl₂, 293 K, TMS): δ = 15.99 (s, br, 1H; NH), 7.40 – 6.70 (m, 20 H; Ph), 4.37 (d, 3 H; =NCH₃), 4.06 (m, 24 H; CH₂), 1.33 ppm (t, 36 H; CH₃); ³¹P{¹H} (200 MHz, CD₂Cl₂, 293 K, H₃PO₄ ext.): δ = 116.7 ppm (s); elemental analysis (%) calcd for C₅₀H₈₄BN₂O₁₃P₄Re (1242.12): C 48.35, H 6.82, N 2.26; found: C 48.19, H 6.95, N 2.30;

3-BPh₄: IR (KBr): $\bar{\nu}$ = 1894 cm⁻¹ (s) ($\nu_{\rm CO}$); ¹H NMR (200 MHz, CD₂Cl₂, 293 K, TMS): δ = 13.98 (s, br, 1 H; NH), 7.60 – 6.80 (m, 20 H; Ph), 4.06 (m, 24 H; CH₂), 3.66 (m, br, 1 H; N=CH₂), 1.34 ppm (t, 36 H; CH₃); ³¹P[¹H] (200 MHz, CD₂Cl₂, 293 K, H₃PO₄ ext.): δ = 123.6 ppm (s); elemental analysis (%) calcd for C₅₀H₈₃BNO₁₃P₄Re (1227.11): C 48.94, H 6.82, N 1.14; found: C 49.08, H 6.96, N 1.10.

Received: March 13, 2002 [Z18883]

a) D. Sellmann, A. Brandl, R. Endell, Angew. Chem. 1973, 85, 1122;
 Angew. Chem. Int. Ed. Engl. 1973, 12, 1019; b) D. Sellmann, A. Brandl, R. Endell, J. Organomet. Chem. 1973, 49, C22; c) G. Huttner, W. Gartzke, K. Allinger, Angew. Chem. 1974, 86, 860; Angew. Chem. Int. Ed. Engl. 1974, 13, 822; d) D. Sellmann, K. Jödden, Angew. Chem. 1977, 89, 480; Angew. Chem. Int. Ed. Engl. 1977, 16, 464; e) D.

- Sellmann, E. Böhlen, M. Waeber, G. Huttner, L. Zsolnai, *Angew. Chem.* 1985, 97, 984; *Angew. Chem. Int. Ed. Engl.* 1985, 24, 981; f) D. Sellmann, W. Soglowek, F. Knoch, M. Moll, *Angew. Chem.* 1989, 101, 1244; *Angew. Chem. Int. Ed. Engl.* 1989, 28, 1271; g) J. P. Collman, J. E. Hutchison, M. A. Lopez, R. Guilard, R. A. Reed, *J. Am. Chem. Soc.* 1991, 113, 2794; h) D. Sellmann, J. Käppler, M. Moll, F. Knoch, *Inorg. Chem.* 1993, 32, 960; i) D. Sellmann, K. Engl, F. W. Heinemann, J. Sieler, *Eur. J. Inorg. Chem.* 2000, 1079.
- [2] a) M. R. Smith III, R. L. Keys, G. L. Hillhouse, A. L. Rheingold J. Am. Chem. Soc. 1989, 111, 8312; b) M. R. Smith III, T.-Y. Cheng, G. L. Hillhouse, J. Am. Chem. Soc. 1993, 115, 8638; c) T.-Y. Cheng, A. Ponce, A. L. Rheingold, G. L. Hillhouse, Angew. Chem. 1994, 106, 703; Angew. Chem. Int. Ed. Engl. 1994, 33, 657; d) T.-Y. Cheng, J. C. Peters, G. L. Hillhouse, J. Am. Chem. Soc. 1994, 116, 204; e) D. Sutton, Chem. Rev. 1993, 93, 995.
- [3] a) G. Albertin, S. Antoniutti, A. Bacchi, E. Bordignon, F. Busatto, G. Pelizzi, *Inorg. Chem.* 1997, 36, 1296; b) G. Albertin, S. Antoniutti, E. Bordignon, S. Pattaro, *J. Chem. Soc. Dalton Trans.* 1997, 4445; c) G. Albertin, S. Antoniutti, A. Bacchi, M. Bergamo, E. Bordignon, G. Pelizzi, *Inorg. Chem.* 1998, 37, 479.
- [4] a) K. H. Geib, P. Harteck, Ber. Disch. Chem. Ges. B 1933, 66, 1815;
 b) K. H. Geib, P. Harteck, Trans. Faraday Soc. 1934, 30, 131.
- [5] a) J. E. Dickens, W. M. Irvine, C. H. DeVries, M. Ohishi, *Astrophys. J.* 1977, 497, 307; b) G. Winnewisser, C. Kramer, *Space Sci. Rev.* 1999, 90, 181.
- [6] F. Hoyle, N. C. Wickramasinghe, Nature 1976, 264, 45.
- [7] P. A. Shapley, J. M. Shusta, J. C. Hunt, Organometallics 1996, 15, 1622.
- [8] G. Albertin, S. Antoniutti, S. Garcia-Fontán, R. Carballo, F. Padoan, J. Chem. Soc. Dalton Trans. 1998, 2071.
- [9] X-ray structural analysis: Philips PW1100 diffractometer equipped with a scintillation counter, graphite-monochromated $Mo_{K\alpha}$ radiation $(\lambda = 0.71069 \text{ Å})$. Data correction for absorption effects by the ψ scan method^[10] for both compounds, and intensity decay correction (40%) for 2-BPh₄. Structural determination: direct methods^[11] and fullmatrix least-squares refinement on all F2.[12] Anisotropic displacement parameters refined in both cases for all non-hydrogen atoms; hydrogen atoms were introduced in idealized positions. Phosphite and phenyl groups were restrained to agree with typical bonding geometry from the literature. Crystal data for $\mbox{2-BPh}_4{:}\ C_{50}H_{84}BN_2O_{13}P_4Re,$ $M_{\rm W} = 1242.12$, crystal dimensions $0.3 \times 0.2 \times 0.2 \,\mathrm{mm}^3$, space group $P2_1/c$, monoclinic, a = 13.002(2), b = 24.570(5), c = 20.054(4) Å, $\beta =$ 95.49(2)°, $V = 6377(2) \text{ Å}^3$, Z = 4, $\rho_{\text{calcd}} = 1.308 \text{ g cm}^{-3}$, $\theta_{\text{max}} = 30^\circ$, 18990 measured reflections (18537 unique), 4388 unique observed $(I > 2\sigma(I))$, $R_1 = 0.095$, $wR_2 = 0.26$ (on observed data), 176 restraints, 601 parameters, GOF=0.845. Crystal data for 3-BPh₄: $C_{50}H_{83}BNO_{13}P_4Re$, $M_W = 1227.11$, crystal dimensions $0.4 \times 0.3 \times 10^{-2}$ 0.2 mm³, space group $P\bar{1}$, triclinic, a = 15.393(5), b = 16.977(5), c =12.916(5) Å, $\alpha = 100.02(5)$, $\beta = 91.63(5)$, $\gamma = 71.08(5)^{\circ}$, $V = 71.08(5)^{\circ}$ 3143(2) ų, Z = 2, $\rho_{\text{calcd}} = 1.290 \text{ g cm}^{-3}$, $\theta_{\text{max}} = 28^{\circ}$, 15138 measured unique reflections, 8634 unique observed $(I > 2\sigma(I))$, $R_1 = 0.048$, $wR_2 = 0.115$ (on observed data), 611 parameters, 79 restraints, GOF = 0.912. CCDC-181120 (2-BPh₄) and CCDC-181121 (3-BPh₄) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/ retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK; fax: (+44)1223-336-033; or deposit@ccdc.cam.ac.uk).
- [10] A. C. T. North, D. C. Phillips, F. S. Mathews, Acta. Crystallogr. Sect. A 1968, 24, 351.
- [11] SIR97: A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, J. Appl. Crystallogr. 1994, 27;, 435.
- [12] G. M. Sheldrick, SHELXL-97, Program for structure refinement, University of Göttingen, Göttingen (Germany), 1997.
- [13] W. A. Herrmann, L. K. Bell, M. L. Ziegler, H. Pfisterer, C. Pahl, J. Organomet. Chem. 1983, 247, 39.
- [14] J. Vicente, M. T. Chicote, M. D. Abrisqueta, R. Guerrero, P. G. Jones, Angew. Chem. 1997, 109, 1252; Angew. Chem. Int. Ed. Engl. 1997, 36, 1203.
- [15] D. A. Knight, M. A. Dewey, G. A. Stark, B. K. Bennett, A. M. Arif, J. A. Gladysz, Organometallics 1993, 12, 4523.

- [16] Coordination geometry for 2: Re–N 2.12(1), Re–CO 2.14(1), Re–P 2.354(4), NH–N 1.251(4), N–C 1.36(2), C–O 1.12(1) Å; Re-N-N 145(2), N-N-C 123(2)°.
- [17] Preliminary investigations show the presence of traces of ammonia in the final reaction mixture, but no other nitrogen-containing compound was unambiguously identified, and therefore no reaction path may be reasonably proposed.
- [18] Metal-mediated N-N or N=N bond activation is a topic of current interest. For some recent examples see: A. K. Verma, S. C. Lee, J. Am. Chem. Soc. 1999, 121, 10838; R. G. Peters, B. P. Warner, C. J. Burns, J. Am. Chem. Soc. 1999, 121, 5585; M. A. Aubart, R. G. Bergman, Organometallics 1999, 18, 811; F. Maseras, M. A. Lockwood, O. Eisenstein, I. P. Rothwell, J. Am. Chem. Soc. 1998, 120, 6598.
- [19] Interest in cleavage of the N-N bond of hydrazine stems from its importance to inorganic and bioinorganic reducing system(s): a) A. E. Shilov, Metal Complexes in Biomimetic Chemical Reactions, CRC, Boca Raton, FL, 1997; b) R. R. Eady, Chem. Rev. 1996, 96, 3013; c) G. J. Leigh, Science 1995, 268, 827; d) R. R. Schrock, T. E. Glassman, M. G. Vale, J. Am. Chem. Soc. 1991, 113, 725; e) S. M. Malinak, K. D. Demadis, D. Coucouvanis, J. Am. Chem. Soc. 1995, 117, 3126; f) D. Sellmann, J. Sutter, Acc. Chem. Res. 1997, 30, 460.

Total Synthesis of the Amaryllidaceae Alkaloid (+)-Plicamine and Its Unnatural Enantiomer by Using Solid-Supported Reagents and Scavengers in a Multistep Sequence of Reactions**

Ian R. Baxendale, Steven V. Ley,* and Claudia Piutti

Amaryllidaceae alkaloids are an important class of natural products especially as many members of the series display a wide range of potent biological activity. These properties include anticholinergic, antitumor, immunosuppresive, and analgesic activity, and they have also been shown to inhibit various cell cycle mechanisms (including HIV-1 activity), and have found recent application in the therapeutic treatment of Alzheimer's disease.^[1] Thus extensive synthetic studies of this family have been carried out over a number of years.^[2, 3] Furthermore, the search for new members of the series has proved to be extremely profitable.^[3, 4] The recently isolated compound (+)-plicamine (1) is especially attractive as it exemplifies many of the structural features of these natural

- [*] Prof. S. V. Ley, I. R. Baxendale Department of Chemistry University of Cambridge Lensfield Road, Cambridge CB2 1EW (UK) Fax: (+44) 1223-336-442 E-mail: svl1000@cam.ac.uk
 C. Piutti Department of Chemistry
 - Pharmacia S.p.A Discovery Research Oncology Viale Pasteur, 10, 20014 Nerviano (MI) (Italy)
- [**] We gratefully acknowledge financial support from Pfizer Central Research for a Postdoctoral Fellowship (to I.R.B.), the BP endowment and the Novartis Research Fellowship (to S.V.L.), and Pharmacia & Upjohn (to C.P.).